3.8 Article

Synthesis of Superparamagnetic Hydroxyapatite Core-Shell Nanostructure by a Rapid Sol-GelRoute

期刊

出版社

SURFACE SCI SOC JAPAN
DOI: 10.1380/ejssnt.2017.121

关键词

Nanoparticles; Nanostructure fabrication; Magnetic; Ironoxide

向作者/读者索取更多资源

Magnetic transportation of therapeutic agents to the infected site in the body promises a superb platform for cancer treatment. To increase the safety profile and to stay clear from the agglomeration issue, core shell structure of magnetite-hydroxyapatite (Fe3O4-HAp) nanoparticles was developed. Fe3O4 as the core was synthesised by co-precipitation method which then coated with HAp layer through the sol-gel technique to maintain its high crystalline property. Optimum process parameters were applied during the fabrication process to yield small nanocomposites. The results show that HAp retained its phase purity and molecular structure even with the addition of Fe3O4 as analysed by XRD and FTIR. The FESEM and TEM micrographs show a magnificent monodispersed distribution of functionalised Fe3O4 -HAp nanoparticles with the size of around 36 nm. EDXRF result confirmed the Ca/P ratio of 1.63, close to the value of main inorganic material of human bones (HAp) and possessed the superparamagnetic properties with saturation magnetisation of 23.274 emu/g as displayed by VSM curves. Thus, the dual affinity of the magnetic Fe3O4 and excellent biocompatibility HAp offer a synergetic effect as the drug or gene delivery vehicle to stealthy localize in infection site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据