4.2 Article

Efficacy of a Self-Assembling Peptide Hydrogel, SPG-178-Gel, for Bone Regeneration and Three-Dimensional Osteogenic Induction of Dental Pulp Stem Cells

期刊

TISSUE ENGINEERING PART A
卷 23, 期 23-24, 页码 1394-1402

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2017.0025

关键词

peptide hydrogel; dental pulp stem cell; bone induction

资金

  1. Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology Agency (JST)
  2. Grants-in-Aid for Scientific Research [16K11846] Funding Source: KAKEN

向作者/读者索取更多资源

The aim of this study was to assess the efficacy of a self-assembling peptide hydrogel as a scaffold for bone regeneration. We used a neutral and injectable self-assembling peptide hydrogel, SPG-178-Gel. Bone defects (5mm in diameter) in rat calvarial bones were filled with a mixture of alpha-modified Eagle's medium and peptide hydrogel. Three weeks after surgery, soft X-ray and microcomputed tomography (micro-CT) images of the gel-treated bones showed new bone formations in the periphery and in central areas of the defects. Next, we evaluated the three-dimensional osteogenic induction of dental pulp stem cells (DPSCs), a type of mesenchymal stem cell, in SPG-178-Gel. We first confirmed that the osteogenic differentiation of DPSCs was significantly promoted by osteogenic induction medium containing recombinant human bone morphogenetic protein-4 (rhBMP-4) in a two-dimensional cell culture. Then, we verified DPSC proliferation and osteogenic differentiation in a three-dimensional cell culture using SPG-178-Gel. The gene expression levels of osteopontin, osteocalcin, and collagen type I were significantly increased when DPSCs were cultured in SPG-178-Gel with the osteogenic induction medium. Micro-CT observations showed the formation of widespread calcium deposition. In conclusion, SPG-178-Gel was adequately effective as a scaffold and can be a suitable tool for bone formation in vivo and in vitro. These findings suggest that the self-assembling peptide hydrogel, SPG-178-Gel, could be a promising tool for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据