4.8 Article

Preparation of High-Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity

期刊

ADVANCED MATERIALS
卷 29, 期 47, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201704253

关键词

conductivity; ionogels; mechanical strength; transparency

资金

  1. National Natural Science Foundation [21404109, 21121001, 91127025]
  2. National Research Fund for Fundamental Key Projects [2012CB933800, 2013CB933000, 2009CB930404, 2012CB934100]
  3. Key Research Program of the Chinese Academy of Sciences [KJZD-EW-M01]
  4. Youth Innovation Promotion Association, CAS [2016026]

向作者/读者索取更多资源

Ionogels offer great potential for diverse electric applications. However, it remains challenging to fabricate high-performance ionogels with both good mechanical strength and high conductivity. Here, a new kind of transparent ionogel with both good mechanical strength and high conductivity is designed via locking a kind of free ionic liquid (IL), i.e., 1-ethyl-3-methylimidazolium dicyanamide ([EMIm][DCA]), into charged poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS)-based double networks. On the one hand, the charged PAMPS double network provides good mechanical strength and excellent recovery property. On the other hand, the free [EMIm][DCA] locked in the charged double network through electrostatic interaction offers ionic conductivity as high as approximate to 1.7-2.4 S m(-1) at 25 degrees C. It is demonstrated that the designed ionogel can be successfully used for a flexible skin sensor even under harsh conditions. Considering the rationally designed chemical structures of ILs and the diversity of charged polymer networks, it is envisioned that this strategy can be extended to a broad range of polymer systems. Moreover, functional components such as conducting polymers, 0D nanoparticles, 1D nanowires, and 2D nanosheets can be introduced into the polymer systems to fabricate diverse novel ionogels with unique functions. It is believed that this design principle will provide a new opportunity to construct next-generation multifunctional ionogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据