4.7 Article

Comparing soil moisture anomalies from multiple independent sources over different regions across the globe

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 21, 期 12, 页码 6329-6343

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-21-6329-2017

关键词

-

向作者/读者索取更多资源

Agricultural drought events can affect large regions across the world, implying the need for a suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are considered a good metric to capture the occurrence of agricultural drought events, and they have become an important component of several operational drought monitoring systems. In the framework of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa. eu/gdo/), the suitability of three datasets as possible representations of root zone soil moisture anomalies has been evaluated: (1) the soil moisture from the Lisflood distributed hydrological model (namely LIS), (2) the remotely sensed Land Surface Temperature data from the MODIS satellite (namely LST), and (3) the ESA Climate Change Initiative combined passive/active microwave skin soil moisture dataset (namely CCI). Due to the independency of these three datasets, the triple collocation (TC) technique has been applied, aiming at quantifying the likely error associated with each dataset in comparison to the unknown true status of the system. TC analysis was performed on five macro-regions (namely North America, Europe, India, southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual relationship between these datasets as well as an assessment of the accuracy of each method. Even if no definitive statement on the spatial distribution of errors can be provided, a clear outcome of the TC analysis is the good performance of the remote sensing datasets, especially CCI, over dry regions such as Australia and southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are well monitored through meteorological ground station networks, such as North America and Europe. In a global drought monitoring system, the results of the error analysis are used to design a weighted-average ensemble system that exploits the advantages of each dataset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据