4.6 Article

Modelling the morphological background to capacity fade in Si-based lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 258, 期 -, 页码 755-763

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.11.124

关键词

Si-electrode; Electrochemical impedance spectroscopy; Volume change; Porosity; Morphology; SEM

资金

  1. European Union's Seventh Framework Programme (FP7) [608575]
  2. Swedish Energy Ageny (SiliCOAT)
  3. STandUP for Energy

向作者/读者索取更多资源

Understanding the fundamental processes at the electrode/electrolyte interface during charge and discharge will aid the development of high-capacity Li-ion batteries (LIBs) with long lifetimes. Finite Element Methodology studies are here used to investigate the interplay between morphological changes and electrochemical performance in Si negative electrodes. A one-dimensional battery model including Solid Electrolyte Interphase (SEI) layer growth is constructed for porous Si electrodes in half-cells and used for simulating electrochemical impedance response during charge and discharge cycles. The computational results are then compared with experimental investigations. The SEI layer from the electrolyte decomposition products, different depending on the presence or absence of the fluoroethylene carbonate (FEC) additive, covers the electrode surface porous structure and is leading to an increasing polarization observed in the Nyquist plots during cycling. A continuous reformation of the SEI layer after each cycle can be observed, leading to consumption of Li-|. The electrolyte composition also results in a variation of electrode porosity, which affects the performance of the cell. A more stable porous network is formed when using the FEC additive, rendering a reduction in polarization due to improved Li diffusion inside the electrode composite. (c) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据