4.3 Article

Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy

期刊

CYTOMETRY PART A
卷 91A, 期 12, 页码 1175-1183

出版社

WILEY
DOI: 10.1002/cyto.a.23282

关键词

fluorescence; single-molecule studies; superresolution localization microscopy; low-light camera; sCMOS camera

向作者/读者索取更多资源

Scientific Complementary Metal Oxide Semiconductor (sCMOS) cameras were introduced into the market in 2009 and are now becoming a major type of commercial cameras for low-light imaging. sCMOS cameras provide simultaneously low read noise, high readout speed, and large pixel array; however, the relatively low quantum efficiency (QE) of sCMOS cameras has been a major limitation for its application in single molecule imaging, especially super-resolution localization microscopy which requires high detection sensitivity. Here we report the imaging performance of a newly released back-illuminated sCMOS camera (called Dhyana 95 from Tucsen) which is claimed to be the world's first 95% QE sCMOS camera. The imaging performance evaluation is based on a new methodology which is designed to provide paired images from two tested cameras under almost identical experimental conditions. We verified that this new 95% QE sCMOS camera is able to provide superior imaging performance over a representative front-illuminated sCMOS camera (Hamamatsu Flash 4.0 V2) and a popular back-illuminated EMCCD camera (Andor iXon 897 Ultra) in a wide signal range. We hope this study will inspire more studies on using sCMOS cameras in super-resolution localization microscopy, or even single molecule imaging. (c) 2017 International Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据