3.8 Proceedings Paper

The Geometry of First-Returning Photons for Non-Line-of-Sight Imaging

出版社

IEEE
DOI: 10.1109/CVPR.2017.251

关键词

-

资金

  1. DARPA REVEAL program
  2. Bertucci Graduate Fellowship
  3. Google PhD Fellowship
  4. NSF CAREER [CCF-1652569]

向作者/读者索取更多资源

Non-line-of-sight (NLOS) imaging utilizes the full 5D light transient measurements to reconstruct scenes beyond the camera's field of view. Mathematically, this requires solving an elliptical tomography problem that unmixes the shape and albedo from spatially-multiplexed measurements of the NLOS scene. In this paper, we propose a new approach for NLOS imaging by studying the properties of first-returning photons from three-bounce light paths. We show that the times of flight of first-returning photons are dependent only on the geometry of the NLOS scene and each observation is almost always generated from a single NLOS scene point. Exploiting these properties, we derive a space carving algorithm for NLOS scenes. In addition, by assuming local planarity, we derive an algorithm to localize NLOS scene points in 3D and estimate their surface normals. Our methods do not require either the full transient measurements or solving the hard elliptical tomography problem. We demonstrate the effectiveness of our methods through simulations as well as real data captured from a SPAD sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据