3.8 Article

Hydrological Cycle Algorithm for Continuous Optimization Problems

期刊

JOURNAL OF OPTIMIZATION
卷 2017, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2017/3828420

关键词

-

向作者/读者索取更多资源

A new nature-inspired optimization algorithm called the Hydrological Cycle Algorithm(HCA) is proposed based on the continuous movement of water in nature. In the HCA, a collection of water drops passes through various hydrological water cycle stages, such as flow, evaporation, condensation, and precipitation. Each stage plays an important role in generating solutions and avoiding premature convergence. The HCA shares information by direct and indirect communication among the water drops, which improves solution quality. Similarities and differences between HCA and other water-based algorithms are identified, and the implications of these differences on overall performance are discussed. A new topological representation for problems with a continuous domain is proposed. In proof-of-concept experiments, the HCA is applied on a variety of benchmarked continuous numerical functions. The results were found to be competitive in comparison to a number of other algorithms and validate the effectiveness of HCA. Also demonstrated is the ability of HCA to escape from local optima solutions and converge to global solutions. Thus, HCA provides an alternative approach to tackling various types of multimodal continuous optimization problems as well as an overall framework for water-based particle algorithms in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据