4.7 Article

A charging-scheme decision model for electric vehicle battery swapping station using varied population evolutionary algorithms

期刊

APPLIED SOFT COMPUTING
卷 61, 期 -, 页码 905-920

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2017.09.008

关键词

Battery swapping stations; Electric vehicles; Evolutionary algorithms; Varied population

资金

  1. Research Office of the Hong Kong Polytechnic University [G-UA7Z]

向作者/读者索取更多资源

This paper proposes a new battery swapping station (BSS) model to determine the optimized charging scheme for each incoming Electric Vehicle (EV) battery. The objective is to maximize the BSS's battery stock level and minimize the average charging damage with the use of different types of chargers. An integrated objective function is defined for the multi-objective optimization problem. The genetic algorithm (GA), differential evolution (DE) algorithm and three versions of particle swarm optimization (PSO) algorithms have been implemented to solve the problem, and the results show that GA and DE perform better than the PSO algorithms, but the computational time of GA and DE are longer than using PSO. Hence, the varied population genetic algorithm (VPGA) and varied population differential evolution (VPDE) algorithm are proposed to determine the optimal solution and reduce the computational time of typical evolutionary algorithms. The simulation results show that the performances of the proposed algorithms are comparable with the typical GA and DE, but the computational times of the VPGA and VPDE are significantly shorter. A 24-h simulation study is carried out to examine the feasibility of the model. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据