3.8 Proceedings Paper

Solar PV array reconfiguration using the concept of Standard deviation and Genetic Algorithm

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2017.05.229

关键词

Array Reconfiguration; Partial Shading; Mismatch losses; SDGA; Global maximum power point; Power enhancement

向作者/读者索取更多资源

Partial shading of PV arrays is one of the most discussed and worked upon problem in the field of solar photovoltaic as it reduces the output power and exhibits multiple peaks in the PV and IV characteristics. As, a result the modules have to be reconfigured to get a maximum power output. This paper presents an optimization based approach for Total cross tied (TCT) connected modules in a PV array. The physical locations of the modules remain unchanged while the electrical connections are altered. The proposed technique utilizes, standard deviation genetic algorithm (SDGA) as an optimization tool, which gives the fmal connection matrix for the new electrical interconnection which extracts the maximum power from the PV array. This is done to obtain uniform shade dispersion throughout the panel. The proposed method has been tested and simulated in Matlab-Simulink environment under partial shading conditions. Results of the simulation show that the proposed reconfiguration technique exhibit superior results as compared to the traditional TCT interconnection scheme. (C) 2017 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据