4.4 Article

Enhanced atomic oxygen adsorption on defective nickel surfaces: An ab initio study

期刊

SURFACE SCIENCE
卷 663, 期 -, 页码 62-70

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.susc.2017.05.006

关键词

Nickel; Oxygen; Adsorption energy; Monovacany-oxygen interaction; Segregation energy

向作者/读者索取更多资源

In this work we have examined the influence of the presence of a monovacancy on the atomic oxygen adsorption process at nickel surfaces of orientation (111), (100), and (110). The presence of such a defect was neglected in earlier studies. And for the first time, we have studied oxygen segregation on a defective (111) surface. The results reveal a varying sensitivity of the oxygen adsorption energy to the state of the surfaces. When compared to the perfect surface, we have registered an energy gain of 0.22 eV in the process of oxygen adsorption on the (111) surface when a vacancy is present on it. However, the energetic gains for the other two surfaces, (100) and (110), are much less than that of the (111) surface: they are of the order of 0.1 eV. Comparing to the perfect surfaces, we have found that charge reconstruction in the neighborhood of the vacancy plays a major role in giving rise to the aforementioned energetic gains. Indeed, we find an increase in the charge density on the nickel atoms surrounding the vacancy, which leads to strengthening of the ionic Ni-O bond if the oxygen is adsorbed in its vicinity. As a means of studying the effect of the presence of the vacancy on the first stages of the growth of an oxide layer, we have looked at the segregation process of oxygen atoms at the three surfaces. Our results show that up to four oxygen atoms can aggregate favorably at the adsorption sites inside and in the vicinity of the monovacancy at the (111) surface. This number is reduced to two oxygen atoms at the (110) surface, and to only one oxygen atom at the (100) surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据