4.7 Article

Damage detection under varying temperature using artificial neural networks

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/stc.1998

关键词

damage identification; multilayer artificial neural network; natural frequency-based damage detection; structural health monitoring; temperature effects

向作者/读者索取更多资源

To avoid false alarms for vibration-based structural damage detection methods, temperature effects on damage-sensitive features should be eliminated. In this paper, a novel two-step damage identification method combining a multilayer neural network and novelty detection is developed to differentiate the changes in natural frequencies (one of the most commonly used damage features that can be obtained reliably and relatively easily) due to damage from those induced by temperature variations. In the first step, a multilayer artificial neural network, which resembles an auto-associative neural network but uses temperature variables in addition to the frequencies as the inputs, is explored to identify patterns in frequencies of undamaged structures under varying temperatures. Euclidean distance is then utilized as a novelty index to quantify the discordancy between patterns in undamaged cases and candidate cases. Numerical studies using a simply supported beam and finite element models based on an experimental grid structure, which simulate different levels of stiffness reductions under varying temperature conditions, are used to verify the detectability and robustness of the proposed approach. It is shown that the incorporation of the proposed artificial neural network with novelty detection enables one to robustly distinguish damage occurrence and severity regardless of temperature variations and noise perturbations. Using an unsupervised learning scheme, the proposed approach transforms a multivariate analysis using modal frequencies and temperature data into a straightforward univariate discordancy test using the novelty index. Given these competitive advantages, this approach is very attractive for the development of an automated continuous monitoring system in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据