4.7 Article

Ambient vibration test-based deflection prediction of a posttensioned concrete continuous box girder bridge

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/stc.2070

关键词

ambient vibration test; deflection prediction; flexibility identification; scaling factor; static test

资金

  1. National Science Foundation of China [51578139, 51608110]
  2. Transportation Technology Project of Jiangsu Province [2017T04]

向作者/读者索取更多资源

Ambient vibration test generally only outputs basic modal parameters including frequencies, damping ratios, and unscaled mode shapes, which cannot directly support decision making of structural maintenance and management. In this article, structural deep-level parameters including unscaled and scaled flexibility identification of a posttensioned concrete continuous box girder bridge are studied by performing ambient vibration test, which is able to predict structural deflections by multiplying the static load with the identified flexibility. Ambient vibration test of the bridge and basic modal identification are firstly performed. Then, the method of unscaled flexibility identification is proposed by investigating the relationship between the frequency response function estimated from ambient test data and the analytical one. Finally, a mass-changing strategy is utilized to identify the scaled flexibility from output-only data, in which the key issue is to identify mass-normalized scaling factors by performing ambient vibration tests of tested structure before and after changing its mass. Numerical simulation of a simply supported beam and field test of a three-span bridge has been conducted to verify the capability and reliability of the proposed method. The good agreement between the predicted deflections from the identified flexibility and those measured from the static test successfully illustrates the effectiveness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据