4.7 Article

Overhead water tank shapes with depth-independent sloshing frequencies for use as TLDs in buildings

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/stc.2049

关键词

tuned liquid dampers; sloshing frequencies; boundary element method; optimization; depth-independent frequency

向作者/读者索取更多资源

Sloshing water in the overhead water tank of a multi-storeyed building may be utilized to act as a tuned liquid damper for vibration control under wind and earthquake excitation. In conventional rectangular or circular water tanks, tuning presents difficulties as the sloshing frequency varies significantly with change in the depth of water in the tank. To address this issue, in this paper, we find shapes of tanks wherein the sloshing frequency is essentially independent of water depth over a large and useful range of water levels. Both two-dimensional as well as axisymmetric (three-dimensional) tank shapes are found. We use a direct boundary element method to find the sloshing frequencies in each case. In each case, a tentative simple analytical form for the tank shape is chosen with three free parameters, and these parameters are adjusted to obtain shapes where the first lateral sloshing frequency has negligible variation with water depth. For axisymmetric tanks, the circumferential (azimuthal) variation in field variables is restricted to the first harmonic, in the interest of lower computational effort. For both planar and axisymmetric cases, the working range of water depths is taken to be from 0.2 to 2 times the tank width. In both cases, the variation in first lateral sloshing mode frequency is found to be under 0.2%over the working range. In comparison, for constant width tanks such as the rectangular or circular ones, over the same range of water depths, the corresponding variation is more than 60 times greater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据