4.7 Article

Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures

期刊

出版社

SPRINGER
DOI: 10.1007/s00158-017-1650-3

关键词

Topology optimization; Crashworthiness; Thin-walled structures; Hybrid cellular automata

向作者/读者索取更多资源

Thin-walled structures are of great importance in automotive crashworthiness design, because of their high crash energy absorption capability and their high potential for light weighting. To identify the best compromise between these two requirements, numerical optimization is needed. Size and shape optimization is relatively well explored while topology optimization for crash is still an open issue. Hence, this paper proposes an approach based on hybrid cellular automata (HCA) for crashworthiness topology optimization with a special focus on thin-walled structures. First approaches have been published, e.g. Duddeck et al. (Struct Multidiscip Optim 54(3):415-428, 2016), using a simple rule to define the target mass for the inner loop of the HCA. To improve the performance, a modified scheme is proposed here for the outer optimization loop, which is based on a bi-section search with limited length. In the inner loop, hybrid updating rules are used to redistribute the mass and a mass correction technique is proposed to make the real mass converge to the target mass strictly. The efficiency and correctness of the proposed method is compared with LS-OPT for axial crash case. Two different methods of defining the target mass in the outer loop are studied, the proposed bi-section search with limited length shows its advantage in two types of three-point bending crash optimization cases. Another advantage of this method is that it requires no significantly increasing number of evaluations when the number of design variables increases. This is demonstrated by applying this method to a crashworthiness optimization problem with 380 design variables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据