4.3 Article

Tailoring the Properties of a Ni-Based Superalloy via Modification of the Forging Process: an ICME Approach to Fatigue Performance

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40192-017-0103-6

关键词

Grain boundary engineering; Sigma 3; Twin; Fatigue; Strain; Modeling

资金

  1. National Science Foundation [CMMI 13-34664, 13-34998]
  2. Rolls-Royce Corporation

向作者/读者索取更多资源

Traditionally, material design and property modifications are usually associated with compositional changes. Yet, subtle changes in the manufacturing process parameters can also have a dramatic effect on the resulting material properties. In this work, an integrated computational materials engineering (ICME) framework is adopted to tailor the fatigue performance of a Ni-based superalloy, RR1000. An existing fatigue model is used to identify microstructural features that promote enhanced fatigue life, namely a uniform, fine grain size distribution, random orientation, a distinct grain boundary distribution (specifically high twin boundary density and limited low-angle grain boundaries). A deformation mechanism map and process models for grain boundary engineering of RR1000 are used to identify the optimal thermo-mechanical processing parameters to realize these desirable microstructural features. For validation, small-scale forgings of RR1000 were produced and heat-treated to attain fine grain and coarse grain microstructures that represent the conventionally processed and grain boundary engineered (GBE) conditions, respectively. For each of the four microstructural variants of RR1000, the twin density and grain size were characterized and were in agreement with the desired microstructural attributes. In order to validate the deformation mechanisms and fatigue behavior of the material, high-resolution digital image correlation was performed to generate strain maps relative to the microstructural features. The high density of twin boundaries was confirmed to inhibit the length of slip bands, which is directly attributed to extended fatigue life. Thus, this study demonstrated the successful role of models, both process and performance, in the design and manufacture of Ni-based superalloy disk forgings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据