3.8 Proceedings Paper

Investigation of Simulated Ground Penetrating Radar Data for Buried Objects Using Quadratic Time-Frequency Transformations

出版社

IEEE

关键词

ground penetrating radar; A-scan signals; time-frequency representations; target feature extraction

资金

  1. Middle East Technical University (ODTU) [BAP-03-01-2016-005]

向作者/读者索取更多资源

Sub-surface sensing is a challenging area of research that highly benefits from the use of ultra-wideband ground penetrating radar (GPR) technology. Detection and classification of buried objects with reduced false alarm rates is still open to improvements. Use of joint temporal and spectral target features obtained from electromagnetic GPR signals using time-frequency representation (TFR) methods is highly promising because TFRs provide detailed information about the energy distribution of GPR signals over the two-dimensional domain of time and frequency. In-1 this study, single-channel down-looking GPR data are simulated for spherical targets composed of different material contents. Following the removal of dominating ground reflections, energy distribution signatures of the A-scan GPR signals of different targets are investigated using the Wigner-Ville Distribution and Page Distribution type quadratic TFRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据