3.8 Proceedings Paper

Scaling CNNs for High Resolution Volumetric Reconstruction from a Single Image

出版社

IEEE
DOI: 10.1109/ICCVW.2017.114

关键词

-

资金

  1. Data to Decisions Cooperative Research Centre
  2. Australian Research Council [CE140100016, FL130100102]
  3. Australian Research Council [CE140100016, FL130100102] Funding Source: Australian Research Council

向作者/读者索取更多资源

One of the long-standing tasks in computer vision is to use a single 2-D view of an object in order to produce its 3-D shape. Recovering the lost dimension in this process has been the goal of classic shape-from-X methods, but often the assumptions made in those works are quite limiting to be useful for general 3-D objects. This problem has been recently addressed with deep learning methods containing a 2-D (convolution) encoder followed by a 3-D (de-convolution) decoder. These methods have been reasonably successful, but memory and run time constraints impose a strong limitation in terms of the resolution of the reconstructed 3-D shapes. In particular, state-of-the-art methods are able to reconstruct 3-D shapes represented by volumes of at most 323 voxels using state-of-the-art desktop computers. In this work, we present a scalable 2-D single view to 3-D volume reconstruction deep learning method, where the 3-D (deconvolution) decoder is replaced by a simple inverse discrete cosine transform (IDCT) decoder. Our simpler architecture has an order of magnitude faster inference when reconstructing 3-D volumes compared to the convolutionde-convolutional model, an exponentially smaller memory complexity while training and testing, and a sub-linear run-time training complexity with respect to the output volume size. We show on benchmark datasets that our method can produce high-resolution reconstructions with state of the art accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据