4.8 Article

Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm

期刊

APPLIED ENERGY
卷 205, 期 -, 页码 399-416

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.07.096

关键词

Solar power tower; Multi-point aiming strategy; Solar flux distribution; Uniformity; Optics loss; Non-dominated sorting genetic algorithm

资金

  1. National Natural Science Foundation of China [51436007, 51590902]

向作者/读者索取更多资源

The extremely non-uniform solar flux distribution in the solar power tower plant can badly cause some crucial problems for the solar receiver such as the local hot spot, the thermal stress, and the thermal deformation. Homogenization of the solar flux distribution is an effective method to avoid these problems, and has become an important research topic. The objective of the present study is to homogenize the solar flux distribution on the inner surfaces within the cavity receiver while keeping the optics loss as low as possible by replacing the conventional single-point aiming strategy with optimal multi-point aiming strategies. Multi-objective optimizations of the aiming strategy for the solar power tower with cavity receivers are performed by using the non-dominated sorting genetic algorithm. The distribution of the aiming points on the cavity aperture and the allocation of the aiming points for each heliostat are optimized simultaneously. The following conclusions can be made: (1) The uniformity of the solar flux distribution on the aperture does not always signify the uniformity of the solar flux distribution on the inner surfaces, where the later one is what we are truly concerned about. Therefore, the optimization of the aiming strategy should take charge of the solar flux distribution on the inner surfaces rather than on the aperture. (2) The multi-objective optimization can provide the trade-off between the non-uniformity of the solar flux distribution and the optics loss in the form of Pareto optimal fronts. (3) The optimal aiming strategies provided by the multi-objective optimization can significantly homogenize the solar flux distribution on the inner surfaces within the cavity at a minimum cost of optics loss. (4) For the optimal aiming strategies at all time except the noon, there exists a west-east asymmetry of the aiming point distribution on the aperture. Moreover, the asymmetry gets less obvious as the time gets closer to the noon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据