3.8 Proceedings Paper

Transition towards a 100% Renewable Energy System and the Role of Storage Technologies: A Case Study of Iran

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.egypro.2017.09.484

关键词

100% renewable energy; Iran; storage technologies; batteries; power-to-gas

资金

  1. Tekes, the Finnish Funding Agency for Innovation [40101/14]

向作者/读者索取更多资源

This work presents a pathway for the transition to a 100% renewable energy (RE) system by 2050 for Iran. An hourly resolved model is simulated to investigate the total power capacity required from 2015 to 2050 in 5-year time steps to fulfil the electricity demand for Iran. In addition, shares of various RE resources and storage technologies have been estimated for the applied years, and all periods before in 5-year time steps. The model takes the 2015 installed power plant capacities, corresponding lifetimes and total electrical energy demand to compute and optimize the mix of RE plants needed to be installed to achieve a 100% RE power system by 2050. The optimization is carried out on the basis of assumed costs and technological status of all energy technologies involved. Moreover, the role of storage technologies in the energy system, and integration of the power sector with desalination and non-energetic industrial gas sectors are examined. Our results reveal that RE technologies can fulfil all electricity demand by the year 2050 at a price level of about 41 - 47 /MWhei depending on the sectorial integration. Moreover, the combination of solar PV and battery storage is found as a least cost solution after 2030 for Iran. If the capacity in 2050 would have been invested for the cost assumptions of 2050 the cost would be 32 - 40 /MWhei, depending on the sectorial integration, which can be expected for the time beyond 2050. (C) 2017 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据