4.6 Article

Particulate Matter Composition and Respiratory Health The PIAMA Birth Cohort Study

期刊

EPIDEMIOLOGY
卷 26, 期 3, 页码 300-309

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/EDE.0000000000000264

关键词

-

资金

  1. Netherlands Ministry of Infrastructure and Environment
  2. European Community [211250, ENV.2009.1.2.2.1]
  3. Netherlands Organization for Health Research and Development
  4. Netherlands Organization for Scientific Research
  5. Netherlands Asthma Fund
  6. Netherlands Ministry of Spatial Planning, Housing, and the Environment
  7. Netherlands Ministry of Health, Welfare, and Sport: PIAMA

向作者/读者索取更多资源

Background: Ambient particulate matter (PM) exposure is associated with children's respiratory health. Little is known about the importance of different PM constituents. We investigated the effects of PM constituents on asthma, allergy, and lung function until the age of 11-12 years. Methods: For 3,702 participants of a prospective birth cohort study, questionnaire-reported asthma and hay fever and measurements of allergic sensitization and lung function were linked with annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc in particles with diameters of less than 2.5 and 10 mu m (PM2.5 and PM10) at birth addresses and current addresses from land-use regression models. Exposure-health relations were analyzed by multiple (repeated measures) logistic and linear regressions. Results: Asthma incidence and prevalence of asthma symptoms and rhinitis were positively associated with zinc in PM10 at the birth address (odds ratio [95% confidence interval] per interquartile range increase in exposure 1.13 [1.02, 1.25], 1.08 [1.00, 1.17], and 1.16 [1.04, 1.30], respectively). Moreover, asthma symptoms were positively associated with copper in PM10 at the current address (1.06 [1.00, 1.12]). Allergic sensitization was positively associated with copper and iron in PM10 at the birth address (relative risk [95% confidence interval] 1.07 [1.01, 1.14] and 1.10 [1.03, 1.18]) and current address. Forced expiratory volume in 1 second was negatively associated with copper and iron in PM2.5 (change [95% confidence interval] -2.1% [-1.1, -0.1%] and -1.0% [-2.0, -0.0%]) and FEF75-50 with copper in PM10 at the current address (-2.3% [-4.3, -0.3%]). Conclusion: PM constituents, in particular iron, copper, and zinc, reflecting poorly regulated non-tailpipe road traffic emissions, may increase the risk of asthma and allergy in schoolchildren.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据