3.8 Proceedings Paper

CNN-based Sensor Fusion Techniques for Multimodal Human Activity Recognition

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3123021.3123046

关键词

Human Activity Recognition; Deep Learning; Sensor Fusion

向作者/读者索取更多资源

Deep learning (DL) methods receive increasing attention within the field of human activity recognition (HAR) due to their success in other machine learning domains. Nonetheless, a direct transfer of these methods is often not possible due to domain specific challenges (e.g. handling of multi-modal sensor data, lack of large labeled datasets). In this paper, we address three key aspects for the future development of robust DL methods for HAR: (1) Is it beneficial to apply data specific normalization? (2) How to optimally fuse multimodal sensor data? (3) How robust are these approaches with respect to available training data? We evaluate convolutional neuronal networks (CNNs) on a new large real-world multimodal dataset (RBK) as well as the PAMAP2 dataset. Our results indicate that sensor specific normalization techniques are required. We present a novel pressure specific normalization method which increases the F-1-score by similar to 4.5 percentage points (pp) on the RBK dataset. Further, we show that late-and hybrid fusion techniques are superior compared to early fusion techniques, increasing the F-1-score by up to 3.5 pp (RBK dataset). Finally, our results reveal that in particular CNNs based on a shared filter approach have a smaller dependency on the amount of available training data compared to other fusion techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据