4.3 Article

Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfven Waves

期刊

SOLAR PHYSICS
卷 292, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11207-017-1140-1

关键词

Radio bursts, type I; Turbulence; Waves, Alfven; Corona

资金

  1. Science and Technology Facilities Council [ST/L000741/1]
  2. Belgian Science Policy Office through IAP Programme [P7/08 CHARM]
  3. Science and Technology Facilities Council [ST/L000741/1, ST/P000533/1] Funding Source: researchfish
  4. STFC [ST/L000741/1, ST/P000533/1] Funding Source: UKRI

向作者/读者索取更多资源

We study the influence of kinetic-scale Alfvenic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio beta of plasma to magnetic pressure is lower than the electron-to-ion mass ratio m(e)/m(i). The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10(10) K for continuum emission, and can exceed 1011 K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfven waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据