4.7 Article

Photoelectrochromic devices based on sputtered WO3 and TiO2 films

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 163, 期 -, 页码 170-177

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2017.01.016

关键词

Photoelectrochromic; Electrochromic; Redox potential; Sputtering; Optical density; Loss current

资金

  1. EU FP7 project WINSMART [314407]

向作者/读者索取更多资源

The photoelectrochromic (PEC) device, a combination of a dye solar cell and an electrochromic film, can be used for the dynamic solar control of buildings under illumination or with an external voltage. Typically, titanium oxide (TiO2) and tungsten oxide (WO3) films are being prepared from colloids or sol-gel chemistry with high porosity and high surface area as functional layers for a photoelectrochromic device in lab scale. We have, for the first time, successfully developed a PEC device with conventionally sputter deposited TiO2 and WO3 films. This coating technique is attractive due to the well documented upscaling capability and industrial viability for window applications. The functional layers WO3 and TiO2 were deposited onto fluorine doped oxide (F:SnO2) coated glass. Characterization of WO3 and TiO2 was performed in an electrochromic cell and in a dye solar cell, respectively. Three types of PEC devices with different layer configuration were constructed and their performance based on visual transmissions was compared. In best case, the visual transmission could be switched from 61 down to 15% in 30 min under 1.5 A.M. illumination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据