4.6 Article

Solid state synthesis and e-beam evaporation growth of Cu2ZnSnSe4 for solar energy absorber applications

期刊

SOLAR ENERGY
卷 153, 期 -, 页码 173-180

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2017.05.042

关键词

CZTSe films; E-beam evaporation; Raman spectroscopy; Optical absorption

资金

  1. Ministry of New & Renewable Energy (MNRE) [31/03/2014-15/PVSE - RD]

向作者/读者索取更多资源

We report the growth and study of Cu2ZnSnSe4 (CZTSe) thin films that have been grown by e-beam evaporation from pre-synthesized bulk source. Bulk source CZTSe was synthesized via solid state synthesis method. Hot pressed near stoichiometric CZTSe bulk was used as source for the growth of CZTSe thin films by e-beam evaporation. Electron beam current (l(b)) was varied between few mA to 110 mA to identify the optimal current for near stoichiometric CZTSe thin film growth without any post deposition annealing. Phase formation in bulk as well as thin films of CZTSe was studied using X-ray diffraction (XRD) and Raman spectroscopy. Raman spectroscopy resolved the ambiguity between co existing main and secondary phases in the complicated quaternary CZTSe. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) measurements were performed on the films grown at optimized e-beam current of lb similar to 70 mA. Scanning electron microscopy (SEM) was used to investigate the surface morphology and the composition was determined from the energy dispersive spectroscopic (EDS) measurements. Optical transmittance and reflectance data were analyzed to calculate the absorption coefficient (alpha) and the band gap (E-g) values. The calculated band gap value of similar to 1.3 eV agrees with the reported value for CZTSe. Positive values of the Seebeck coefficient indicated the p-type nature of the thin films. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据