4.6 Article

Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices

期刊

SOLAR ENERGY
卷 146, 期 -, 页码 287-297

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2017.02.030

关键词

Atmospheric plasma; Cadmium sulphide thin films; Photovoltaic devices; Surface energy; Surface contamination; Atmospheric deposition processes

资金

  1. EPSRC
  2. RCUK Supergen SuperSolar Hub [EP/J017361/1, EP/M014797/1]
  3. Engineering and Physical Sciences Research Council [EP/P02484X/1, EP/M014797/1, EP/J017361/1, EP/N508457/1] Funding Source: researchfish
  4. The British Council [172726566] Funding Source: researchfish
  5. EPSRC [EP/M014797/1, EP/J017361/1, EP/P02484X/1, EP/N508457/1] Funding Source: UKRI

向作者/读者索取更多资源

Atmospheric solution based processes are being developed for the fabrication of thin film photovoltaic devices. Deposition techniques such as electrodeposition, spin coating, spraying or printing are promising techniques to increase the throughput and reduce the cost per Watt of Copper-Indium-Gallium-Selenide (CIGS), Copper-Zinc-Tin-Sulphide (CZTS) and perovskite thin film solar technologies. All these technologies require pre-treatment of the substrate prior to the deposition of the thin film and ideally this pretreatment should also be performed at atmospheric pressure. Results presented in this paper show that use of an atmospheric-pressure plasma is highly effective in activating the surface of substrates commonly used in thin film photovoltaic (PV) device fabrication. Surface activation improves the adhesion of thin films. The use of an atmospheric activation process is compatible with a continuous vacuum free PV fabrication process. Soda lime glass (SDL) and fluorine doped tin oxide (FTO) coated glass are substrates commonly used in the fabrication of photovoltaic modules. These substrates have been surface treated using a He/O-2 atmospheric-pressure plasma, resulting in increased surface energy as evidenced by Water Contact Angle (WCA) measurements. The pre-treatment reduces adventitious surface contamination on the substrates as shown using X-ray Photoelectron Spectroscopy (XPS) measurements. The advantages of using the atmospheric plasma surface pre-treatment has been demonstrated by using it prior to atmospheric deposition of Cadmium Sulphide (CdS) thin films using a sonochemical process. The CdS thin films show pinhole-free coverage, faster growth rates and better optical quality than those deposited on substrates pre-treated by conventional wet and dry processes. Crown Copyright (C) 2017 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据