4.7 Article

NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization

期刊

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
卷 100, 期 -, 页码 417-427

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.soildyn.2017.05.013

关键词

Support vector machine; Enhanced probabilistic neural networks; Neural dynamic classification; Neural dynamic model of Adeli and Park; Earthquake early warning system; Earthquake prediction

向作者/读者索取更多资源

An Earthquake Early Warning System (EEWS) can save lives. It can also be used to manage the critical lifeline infrastructure and essential facilities. Recent research on earthquake prediction towards the development of an EEWS can be classified into two groups based on a) arrival of P waves and b) seismicity indicators. The first approach can provide warnings within a timeframe of seconds. A seismicity indicator-based EEWS is intended to forecast major earthquakes within a time frame of weeks. In this paper, a novel seismicity indicator-based EEWS model, called neural EEWS (NEEWS), is presented for forecasting the earthquake magnitude and its location weeks before occurrence using a combination of a classification algorithm (CA) based on machine learning concepts and a mathematical optimization algorithm (OA). The role of the CA is to find whether there is an earthquake in a given time period greater than a predefined magnitude threshold and the role of the OA is to find the location of that earthquake with the maximum probability of occurrence. The model is tested using earthquake data in southern California with a combination of four CM and one OA to find the best EEWS model. The proposed model is capable of predicting strong disastrous events as long as sufficient data are available for such events. The paper provides a novel solution to the complex problem of earthquake prediction through adroit integration of a machine learning classification algorithm and the robust neural dynamics optimization algorithm of Adeli and Park.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据