4.7 Article

Is the rate of mineralization of soil organic carbon under microbiological control?

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 112, 期 -, 页码 127-139

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2017.05.003

关键词

-

资金

  1. Chinese Government 1000 Talents Programme
  2. National Natural Science Foundation of China [41371246, 41671233]

向作者/读者索取更多资源

A theory called the Regulatory Gate Hypothesis was previously proposed to considers that the rate limiting step in soil organic carbon (SOC) mineralization is independent of the size, community stricture or specific activity (mg CO2-C evolved g(-1) biomass C) of the soil microbial biomass. Here we report new experiments to test this hypothesis. In the first experiment, six different soils were perfused with CHCI3-saturated water to model SOC release and to stop microbial activity. Apart from one highly organic soil, they all released SOC at low and roughly constant rates, over sixty three days. In the second experiment, when the freeze-dried perfusates were returned to the parent soils, their % mineralization ranged from 17 to 35% over ten days, in contrast to bulk SOC (range 0.46-0.77%). In the third experiment, two soils were given three consecutive fumigations, each followed by 10 days aerobic incubation. The microbial biomass was decreased by > 90%, yet SOC mineralization proceeded at the same rate as in nonfumigated soil. In the fourth experiment, the six soils were subjected to various perturbations, including non perturbed controls, fumigation-incubation, air-drying rewetting, freeze-thaw (-20 degrees C and 80 degrees C) and sieving < 0.3 mm. After an initial flush due to the perturbations, the rates of mineralization became roughly equal in nearly all soil treatments and comparable to the control, despite significant declines in biomass. This shows that basal respiration was little affected by the perturbations. In Experiment five the effects of the perturbations on the microbial communities in the different soils and perturbations were determined. The bacterial community was significantly modified by both fumigation and air drying-rewetting, due mainly to increased Firmiculites and decreased Proteobacteria populations. Our findings suggest that mineralization of SOC is a two-stage process: firstly, non-bioavailable forms are converted abiologically to bioavailable forms (termed the Regulatory Gate), which, only then, undergo second process, biological mineralization. This finding has serious implications for theories of e.g. SOC dynamics, effects of global warming and soil nutrient cycling. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据