4.6 Article

Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity

期刊

SMART MATERIALS AND STRUCTURES
卷 26, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-665X/26/3/035050

关键词

nanoscale energy harvesting; flexoelectricity; piezoelectricity

资金

  1. National Natural Science Foundation of China [11372238, 11302161, 11302162, 11602189]
  2. Chang Jiang Scholar program
  3. China Postdoctoral Science Foundation [2015M580835]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Due to the electromechanical coupling effect, mechanical energy can be converted into electrical energy in certain materials. A theoretical framework is established to investigate the circuit voltage, electric power of nanoscale mechanical energy harvesting, in which the mechanical vibration energy was converted into electrical energy by piezoelectric and flexoelectric effects. Analytical solutions for the maximum electric potential, circuit voltage and electric power generated in bent BaTiO3 (BT), ZnO nanowires (NWs) and Pb(Mg1/3Nb2/3)O-3 (PMN) nanofilms (NFs) were derived. Static and dynamic analyses are conducted to obtain the fundamental information of these mechanical energy harvestings. Different from the previous studies, the flexoelectric-mechanism are included in the fundamental mechanical frameworks. The maximum electric potential generated in the BT, ZnO NWs and PMN NF is found to be enhanced by flexoelectricity in the static case, meanwhile the circuit voltage and electric power are dramatic enhanced by flexoelectricity when the geometric dimensions shrinks to dozens of nanometers. The mechanical limitation condition is employed to calculate the practical maximum electric potential, circuit voltage and electric power. This work tries to provide a comprehensive understanding of the mechanical energy harvesting capability of these nanoscale structures and provide valuable information for designing flexoelectricity-based nanogenerator devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据