4.8 Article

MOF-Derived Hollow Cage NixCo3-xO4 and Their Synergy with Graphene for Outstanding Supercapacitors

期刊

SMALL
卷 13, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201603102

关键词

-

资金

  1. Academic Research Fund [RGT27/13]
  2. Ministry of Education in Singapore

向作者/读者索取更多资源

Highly optimized nickel cobalt mixed oxide has been derived from zeolite imidazole frameworks. While the pure cobalt oxide gives only 178.7 F g(-1) as the specific capacitance at a current density of 1 A g(-1), the optimized Ni:Co 1:1 has given an extremely high and unprecedented specific capacitance of 1931 F g(-1) at a current density of 1 A g(-1), with a capacitance retention of 69.5% after 5000 cycles in a three electrode test. This optimized Ni:Co 1:1 mixed oxide is further used to make a composite of nickel cobalt mixed oxide/graphene 3D hydrogel for enhancing the electrochemical performance by virtue of a continuous and porous graphene conductive network. The electrode made from GNi:Co 1:1 successfully achieves an even higher specific capacitance of 2870.8 F g(-1) at 1 A g(-1) and also shows a significant improvement in the cyclic stability with 81% capacitance retention after 5000 cycles. An asymmetric supercapacitor is also assembled using a pure graphene 3D hydrogel as the negative electrode and the GNi:Co 1:1 as the positive electrode. With a potential window of 1.5 V and binder free electrodes, the capacitor gives a high specific energy density of 50.2 Wh kg(-1) at a high power density of 750 W kg(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据