4.8 Article

Highly Doped Carbon Nanobelts with Ultrahigh Nitrogen Content as High-Performance Supercapacitor Materials

期刊

SMALL
卷 13, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201700834

关键词

-

资金

  1. National Natural Science Foundation of China [21371097]
  2. Key University Science Research Project of Jiangsu Province [16KJA150004]

向作者/读者索取更多资源

Nitrogen-doped and nitrogen and oxygen codoped carbon nanobelts (CNBs) (denoted as N-CNBs and N-O-CNBs, respectively) are respectively obtained by pyrolyzing the self-aligned polypyrrole (PPy) NBs and Se@poly(2-methoxy-5-nitroaniline) core@shell nanowires. Particularly, the uniform size, unique nanostructure, and well-defined edges of the PPy NBs result in the uniform size of the doped CNBs with an extraordinarily high N doping level (approximate to 16 at%), especially the very large concentrations of the redox active pyridinic (9 at%) and pyrrolic N (3.5 at%) species. Furthermore, the precursors in highly self-aligned, dense arrays give rise to a very high packing density for the N-CNBs and N-O-CNBs. These incomparable features provide not only appropriate pathways for the introduction of pseudocapacitance via rapid Faradaic reactions and enhancement of volumetric capacitance but also structural design and synthesis approach to new types of nanostructured carbon. Notably, the N-CNBs obtained at the pyrolysis temperature of 800 degrees C (N-CNB8) in symmetric electrochemical cells deliver a specific capacitance of 458 F g(-1) and ultrahigh volumetric capacitance of 645 F cm(-3) in aqueous solution, which are among the best performance ever reported for carbon-based supercapacitive materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据