4.8 Article

A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection

期刊

SMALL
卷 13, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201700425

关键词

-

资金

  1. Penn State Materials Research Institute
  2. Huck Institute of Life Sciences
  3. Pennsylvania State University start-up fund
  4. National Institutes of Health [DP2CA174508]

向作者/读者索取更多资源

Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 x 10(3) EID50 mL(-1) (EID50: 50% embryo infectious dose), which is approximate to 22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据