4.8 Article

Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study

向作者/读者索取更多资源

Using molecular dynamics simulations, it is shown that a carbon nanotube (CNT) suspended in water and subjected to a rotating electric field of proper magnitude and angular speed can be rotated with the aid of water dipole orientations. Based on this principle, a rotational nanomotor structure is designed and the system is simulated in water. Use of the fast responsiveness of electric-field-induced CNT orientation in water is employed and its operation at ultrahigh-speed (over 1011 r.p.m.) is shown. To explain the basic mechanism, the behavior of the rotational actuation, originated from the water dipole orientation, is also analyzed. The proposed nanomotor is capable of rotating an attached load (such as CNT) at a precise angle as well as nanogear-based complex structures. The findings suggest a potential way of using the electric-field-induced CNT rotation in polarizable fluids as a novel tool to operate nanodevices and systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据