4.7 Article Proceedings Paper

Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-015-4590-8

关键词

Cadmium; Rice grains; Biochars; P. aeruginosa; B. subtilis; B. bassiana; Microorganisms

资金

  1. Higher Education Research Promotion and National Research University Project of Thailand
  2. Suan Dusit Rajabhat University
  3. Office of the Higher Education Commission

向作者/读者索取更多资源

Cadmium (Cd) contaminated in rice grains is a serious problem because most Asians consume rice on a daily basis. Rice grown in Cd-contaminated soil normally did not have high concentration of Cd. However, soil samples used in this study had high concentrations of Cd. The purpose of this study was to clearly see the effects of biochar and microorganism addition in rice growing in Cd-contaminated soil. The initial Cd concentration in Cd-contaminated soil used in this study was about 650 mg kg(-1). Cadmium concentration in rice plants grown in Cd-contaminated soil with the addition of 1 % (w/w) different biochars such as sawdust fly ash (SDFA), bagasse fly ash (BGFA), and rice husk ash (RHA) was investigated. The results showed that SDFA was the best biochar in terms of reducing cadmium accumulation in rice grains when compared to BGFA and RHA under the same conditions. In addition, rice plants grown in Cd-contaminated soil with the addition of various nonpathogenic microorganisms, such as Pseudomonas aeruginosa, Bacillus subtilis, and Beauveria bassiana were also studied. The results showed that the addition of 2 % (v/v) microorganisms can reduce Cd accumulation in grains. It was found that grains obtained from Cd-contaminated soil with the addition of P. aeruginosa had the lowest cadmium concentration compared to the ones from soil amended with other strains. This was due to the fact that P. aeruginosa adsorbed more Cd itself into its cells than other strains. The rice plants grown in Cd-contaminated soil with the addition of biochars and microorganisms were also compared. The results showed that adding 2 % (v/v) microorganisms seemed to reduce Cd accumulation in rice grains better than adding 1 % (w/w) biochars. In addition, the amounts of calcium and magnesium in rice grains and the dry weight of plant in Cd-contaminated soil amended with P. aeruginosa were the highest in comparison to other microorganisms, biochars, and the soil without any amendments (Cd-soil control). It might be possible that microorganisms can cause leaching of Ca, Mg, etc. from contaminated soil and compete with Cd to be uptaken by plants. This would cause the increase in plant dry weight and higher mineral nutrients accumulation in grains. Both biochars and microorganisms are suitable for reducing the amount of Cd in rice grains. The application should depend on farmers, biochars available in nearby areas, etc. Therefore, microorganisms and biochars can be used to solve the problem of cadmium contamination in rice grains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据