4.7 Article

High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 179, 期 -, 页码 25-35

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2017.01.032

关键词

Antimony doped tin dioxide; Carbon nanotube; Bisphenol A; Pulse electrodeposition; Electrocatalysis

向作者/读者索取更多资源

In this study, a duplex-structured SnO2-Sb-CNT composite anode (Ti/SnO2-Sb/SnO2-Sb-CNT) was fabricated using pulse electrodeposition technique. SnO2-Sb-CNT composite composed of 4-5 nm SnO2-Sb particles was synthesized via co-precipitation prior to the electrode preparation and characterized with BET and TEM. Characterization of Ti/SnO2-Sb/SnO2-Sb-CNT by FESEM, EDS, XRD, XPS, LSV, CV and EIS revealed that the novel duplex structured electrode had larger electroactive surface area and lower charge transfer resistance than conventional Ti/SnO2-Sb prepared by thermochemical decomposition, due to its more compact and rough surface. It also improved the electrochemical stability of Ti/SnO2-Sb/SnO2-Sb-CNT with a service lifetime up to 86 h. The oxygen evolution potential (OEP) of Ti/SnO2-Sb/SnO2-Sb-CNT was determined to be 2.2 V (vs Ag/AgCI). Bulk electrolysis of bisphenol A (BPA) was conducted to evaluate the electrocatalytic performance of the electrodes at various current densities (10-40 mA cm(-2)) and initial pH (3-11) of solution by determination of BPA degradation, total organic carbon (TOC) removal and mineralization current efficiency (MCE). Ti/SnO2-Sb/SnO2-Sb-CNT intended to adsorb more BPA molecules, which may contribute to its high current efficiency for electrochemical oxidation of BPA. The presence of humic acid (HA) could decrease the performance efficiency by inhibiting the adsorption of BPA by Ti/SnO2-Sb/SnO2-Sb-CNT. A mechanism is proposed to illustrate the enhanced degradation of BPA by Ti/SnO2-Sb/SnO2-Sb-CNT by synergistic adsorption and electrochemical oxidation. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据