3.8 Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

期刊

SAE INTERNATIONAL JOURNAL OF ENGINES
卷 10, 期 5, 页码 2305-2318

出版社

SAE INT
DOI: 10.4271/2017-24-0061

关键词

-

资金

  1. U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices

向作者/读者索取更多资源

Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn't allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects. Kinetic modeling demonstrates that the effectiveness of EGR to mitigate knock is highly dependent on the pressure-temperature condition. Experiments at 2000 rpm have confirmed reduced fuel ignition delay under highly boosted conditions relevant to modern downsized boosted SI engines, where in-cylinder pressure is higher and the temperature is cooler. At these conditions, charge reactivity increases compared to naturally aspirated conditions, and attenuation of knock by EGR is reduced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据