3.8 Proceedings Paper

Attributed Network Embedding for Learning in a Dynamic Environment

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3132847.3132919

关键词

Dynamic Networks; Attributed Networks; Network Embedding

资金

  1. National Science Foundation (NSF) grant [1614576]
  2. Office of Naval Research (ONR) grant [N00014-16-1-2257]
  3. Div Of Information & Intelligent Systems
  4. Direct For Computer & Info Scie & Enginr [1614576] Funding Source: National Science Foundation

向作者/读者索取更多资源

Network embedding leverages the node proximity manifested to learn a low-dimensional node vector representation for each node in the network. The learned embeddings could advance various learning tasks such as node classification, network clustering, and link prediction. Most, if not all, of the existing works, are overwhelmingly performed in the context of plain and static networks. Nonetheless, in reality, network structure often evolves over time with addition/deletion of links and nodes. Also, a vast majority of real-world networks are associated with a rich set of node attributes, and their attribute values are also naturally changing, with the emerging of new content patterns and the fading of old content patterns. These changing characteristics motivate us to seek an effective embedding representation to capture network and attribute evolving patterns, which is of fundamental importance for learning in a dynamic environment. To our best knowledge, we are the first to tackle this problem with the following two challenges: (1) the inherently correlated network and node attributes could be noisy and incomplete, it necessitates a robust consensus representation to capture their individual properties and correlations; (2) the embedding learning needs to be performed in an online fashion to adapt to the changes accordingly. In this paper, we tackle this problem by proposing a novel dynamic attributed network embedding framework- DANE. In particular, DANE first provides an offline method for a consensus embedding and then leverages matrix perturbation theory to maintain the freshness of the end embedding results in an online manner. We perform extensive experiments on both synthetic and real attributed networks to corroborate the effectiveness and efficiency of the proposed framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据