4.2 Article

Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 42, 期 2, 页码 685-696

出版社

KARGER
DOI: 10.1159/000477886

关键词

Aloe-emodin; Hepatotoxicity; HepaRG cells; ROS; Apoptosis

资金

  1. National Natural Science Foundation of China [81673609]
  2. Collaborative Innovation Construction Plan of Belling University of Chinese Medicine [2013-XTCX-03]

向作者/读者索取更多资源

Background/Aims: Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), an anthraquinone active compounds, is isolated from some traditional medicinal plants such as Rheum palmatum L. and Cassia occidentalis, which induce hepatotoxicity in rats. The aim of this study was to determine potential cytotoxic effects of aloe-emodin on HepaRG cells and to define the underlying mechanism. Methods: MTT was used to evaluate cell viability. Apoptotic cell death was analyzed via Annexin V-FITC/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry, while the expression of apoptosis-related proteins was determined by Western blot analysis. Results: Treatment with aloe-emodin significantly reduced cell viability and induced apoptosis in HepaRG cells in a dose-and time-dependent manner. It provoked ROS generation and depolarization of MMP in HepaRG cells when compared with controls. Aloe-emodin dose-dependently increased release of mitochondrial cytochrome c, and levels of Fas, p53, p21, Bax/Bcl-2 ratio, as well as activation of caspase-3, caspase-8, caspase-9, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). It also induced S-phase cell cycle arrest by increasing the expression of p21 and cyclin E proteins while significantly decreasing the expression of cyclin A and CDK2. Conclusion: These results suggest that aloe-emodin inhibits cell proliferation and induces apoptosis in HepaRG cells, most probably through a mechanism involving both Fas death pathway and the mitochondrial pathway by generation of ROS. These findings underscore the need for risk assessment of human exposure to aloeemodin. (C) 2017 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据