4.4 Article

Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6641/aa8605

关键词

tellurium nanobelt; 1D van der Waals solid; piezotronic effect

资金

  1. College of Engineering and School of Industrial Engineering at Purdue University
  2. Oak Ridge Associated Universities (ORAU)

向作者/读者索取更多资源

Emerging technologies in wearable systems demand that functional devices can adaptively interact with the human body, where mechanical stimuli are ubiquitous and abundant. However, the electrical manipulation of charge carriers underpins the operations of state-of-the-art devices, and the effective control of interfacial energetics for charge carriers by the dynamic mechanical stimuli is still a relatively unexplored degree of freedom for semiconductor nanodevices. Piezotronic effect in nanostructured piezoelectric semiconductors offers exciting opportunities in addressing the above challenges. Here we report the first experimental exploration of piezotronic effect in 1D van der Waals solid of p-type tellurium nanobelt and systematically investigate the strain-gated charge carriers transport properties. The strain-induced polarization charges at the [1010] surfaces of Te nanobelt can modulate the electronic transport through the interfacial effect on the Schottky contacts and the volumetric effect on the conducting channel. The competing phenomenon between interfacial and volumetric effects has been studied for the first time in piezotronics. Our research allows the access to a broad range of characterization and application of Te nanomaterials for piezotronics and could guide the future study of piezotronic effect in other materials. This progress in piezotronics, together with emerging methods for deterministic production and assembly of nanomaterials, leads to compelling opportunities for research from basic studies of piezoelectricity and semiconductor properties in functional nanomaterials to the development of smarter' electronics and optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据