4.4 Review

Light-emitting silicon nanowires obtained by metal-assisted chemical etching

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6641/aa60b8

关键词

Si nanowires; photonic applications; photoluminescence; metal-assisted chemical etching; Raman spectroscopy; electroluminescence; pulsed laser deposition

资金

  1. TECLA [PON_00214_1]

向作者/读者索取更多资源

This review reports on a new process for the synthesis of Si nanowires (NWs), based on the wet etching of Si substrates assisted by a thin metal film. The approach exploits the thicknessdependent morphology of the metal layers to define uncovered nanometric Si regions, which behave as precursor sites for the formation of very dense (up to 1. x. 10(12) NW cm(-2)) arrays of long (up to several mu m) and ultrathin (diameter of 5-9 nm) NWs. Intense photoluminescence (PL) peaks, characterized by maxima in the 640-750 nm range and by an external quantum efficiency of 0.5%, are observed when the Si NWs are excited at room temperature. The spectra show a blueshift if the size of the NW is decreased, in agreement with the occurrence of quantum confinement effects. The same etching process can be used to obtain ultrathin Si/Ge NWs from a Si/Ge multi-quantum well. The Si/Ge NWs exhibit-in addition to the Si-related PL peak-a signal at about 1240 nm due to Ge nanostructures. The huge surface area of the Si NW arrays can be exploited for sensing and analytical applications. The dependence of the PL intensity on the chemical composition of the surface indeed suggests interesting perspectives for the detection of gaseous molecules. Moreover, Si NWs decorated with Ag nanoparticles can be effectively employed in the interference-free laser desorption-ionization mass spectrometry of lowmolecular-weight analytes. A device based on conductive Si NWs, showing intense and stable electroluminescence at an excitation voltage as low as 2 V, is also presented. The unique features of the proposed synthesis (the process is cheap, fast, maskless and compatible with Si technology) and the unusual optical properties of the material open the route towards new and unexpected perspectives for semiconductor NWs in photonics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据