4.2 Article

Administration of Curcumin Protects Kidney Tubules Against Renal Ischemia-Reperfusion Injury (RIRI) by Modulating Nitric Oxide (NO) Signaling Pathway

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 44, 期 1, 页码 401-411

出版社

KARGER
DOI: 10.1159/000484920

关键词

Riri; Renal tubule; Curcumin; NO; NOS; CGMP; PKG; Signal transduction

资金

  1. Scientific Research Fund of Zhejiang Provincial Education Department [Y201534611]

向作者/读者索取更多资源

Background/Aims: To explore the protective effect of curcumin on renal ischemia-reperfusion injury (RIRI) in rats, and its influence on nephridial tissue's NO and cGMP levels as well as downstream signaling pathway, to elucidate the possible mechanism of curcumin on RIRI. Methods: 36 Sprague Dawley rats (SD rats) were randomly divided into Sham group, Model group, curcumin (CUR +) Model group, 12 rats per group. They were all given RIRI model preparation by unilateral artery occlusion method. All groups' beta 2-MG in urine in 24h, serum Cr and BUN were compared, and UAER were calculated. Nitric oxide synthase (NOS), cGMP-dependent protein kinase (PKG), Caspase-3 expression were all determined by western blot. Nitric oxide (NO), NOS and cGMP levels were also examined by using ELISA. All groups' nephridial histomorphology and kidney tubules score were evaluated and compared. Results: beta 2-MG and UAER in urine, serum Cr and BUN, in renal tissue were all elevated in Model of RIRI, indicating the success of animal model of RIRI establishment, and above index in CUR + Model group were all lower than those in Model group. Furthermore, iNOS, NO, cGMP, PKG and Caspase-3 in renal tissue were all increased in Model of RIRI, indicating the NO signaling pathway was activated, which is one of the pathogenesis of RIRI, and above index in CUR + Model group were all lower than those in Model group, suggesting that inactivation of iNOS/NO/cGMP/PKG signaling pathway is one of the reasons that explain the protective effect of curcumin in RIRI. Conclusion: The activation of iNOS/NO/cGMP/PKG signaling pathway and the consequent promoted apoptosis of renal tubules are significantly involved in the pathogenesis of development of RIRI, and curcumin treatment could protect renal tubules against RIRI, at least partially, by suppressing the activated iNOS/NO/cGMP/PKG signaling pathway. (C) 2017 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据