4.3 Article

Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat

期刊

CHRONOBIOLOGY INTERNATIONAL
卷 34, 期 9, 页码 1224-1238

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07420528.2017.1358735

关键词

core temperature; diurnal variation; heat stress; skin temperature; sunlight

向作者/读者索取更多资源

High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m(2) and 44-69 degrees) and decrease in PM (717-0 W/m(2) and 34-0 degrees) and were higher on AM than on PM (both P < 0.001). Although ambient temperature (AM 32-36 degrees C, PM 36-30 degrees C) and wet-bulb globe temperature (AM 31-33 degrees C, PM 34-27 degrees C) also continued to increase in AM and decrease in PM, there were no differences between trials in these (both P > 0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P < 0.05). Skin temperature was higher in AM than PM at the upper arm and thigh at 120 min (P < 0.05) and at the calf at 120 and 180 min (both P < 0.05). Body heat gain from the sun was greater during exercise in AM than PM (P < 0.0001), at 0-60 min in PM than AM (P < 0.0001) and at 120-180 min in AM than PM (P < 0.0001). Dry heat loss during exercise was greater at 0-60 min (P < 0.0001), and lower at 60-120 min (P < 0.05) and 120-180 min (P < 0.0001) in AM than PM. Evaporative heat loss during exercise was greater in PM than AM at 120-180 min (P < 0.0001). Total (dry + evaporation) heat loss at the skinwas greater during exercise in PM than AM (P < 0.0001), at 0-60 min in AM than PM (P < 0.0001) and at 60-120 and 120-180 min in PM than AM (P < 0.05 and 0.0001). Heart rate at 120-150 min was also higher in AM than PM (P < 0.05). Neither perceived thermal sensation nor rating of perceived exertion was different between trials (both P > 0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据