4.7 Article

Application of a crustacean bioassay to evaluate a multi-contaminated (metal, PAH, PCB) harbor sediment before and after electrokinetic remediation using eco-friendly enhancing agents

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 607, 期 -, 页码 944-953

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.07.094

关键词

Electrokinetic remediation; Acute toxicity; Biosurfactants; Copepods; Eurytemora affinis; Mixed contamination

资金

  1. Normandy Region (France) through the research network SCALE within the project SEDEVAR

向作者/读者索取更多资源

Electrokinetic (EK) remediation can be a suitable technology for treating contaminated dredged harbor sediment, stored on terrestrial disposal sites. Citric acid (CA) and biosurfactants (rhamnolipids and saponin) were chosen as enhancing agents for simultaneous metal (Cd, Cr, Cu, Pb, Zn) and PAH/PCB removal by EK because of their potential low toxicity with a view to site restoration. Three EK runs were performed using a periodic voltage (1 V cm(-1)) and various concentrations of agents. The best combination of CA (0.2 mol L-1) and saponin (0.85 g L-1) did not remove high amounts of metals (4.4-15.8%) and provided only slightly better results for PAH and PCB removal (29.2% and 38.2%, respectively). The harbor sediment was highly resistant to metal and organics mobilization and transport because of an aged contamination, a high buffering capacity, a very low hydraulic permeability and a high organic matter content. The efficiency of the EK process was also assessed by measuring the acute toxicity of the EK-treated sediment on E. affinis copepods exposed to sediment elutriates. Fortunately, the use of CA and biosurfactants did not significantly impact on sediment toxicity. Some treated sediment sections, particularly those near the anode compartment, were statistically more toxic than the raw sediment. More particularly, E. affinis copepods were significantly sensitive to low pH values and oxidative conditions, to Cu, and to a lesser extent to Pb amounts. The speciation of these metals probably changed in these pH and redox conditions so that they became more easily leachable and bioavailable. In contrast, toxicity was negatively correlated to PAH and PCB amounts after EK treatment, probably due to the production of oxidized metabolites of PAHs and PCBs. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据