4.7 Article

CeO2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 590, 期 -, 页码 304-315

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.03.007

关键词

Nanoparticles; Zeta potential; Microalgae; Internal granularity

资金

  1. Junta de Andalucia [PE2011-RNM-7812, FQM-110]
  2. Spanish National Research Plan [CTM2012-38720-C03-03]
  3. Project MINECO/FEDER [MAT2013-40823-R]

向作者/读者索取更多资源

CeO2 nanoparticles (CeO2 NPs) are well-known for their catalytic properties and antioxidant potential. Recent uses in therapy are based on the Ce+3 ions released by CeO2 NPs. Reactions involving redox cycles between Ce+3 and Ce+4 oxidation stage seem to promote scavenging of reactive oxygen species (ROS), thus protecting cells from oxygen damage. However, the internalization of CeO2 NPs and release of Ce+3 could be responsible for a toxic effect on cells. The literature reports controversial results on the toxicity of CeO2 NPs to phytoplankton. Therefore, we have tested the potential toxic effect of two CeO2 NPs (with positive and negative zeta potential) and bulk CeO2 (at 0.1, 1, 10, 100 and 200 mg center dot L-1) on three species of microalgae from different environments: marine diatom (Phaeodactylum tricornutum), marine chlorophyte (Nannochloris atomus) and freshwater chlorophyte (Chlamydomonas reinhardtii) over 72 h in batch cultures. Responses measured in the microalgae population are: growth, chlorophyll a, cell size, cell complexity, percentage of ROS, and percentage of cell membrane damage. Positive zeta potential CeO2 NPs provoked greater cell complexity (up to 78, 172 and 23 times more cell complexity than in controls found for C.reinhardtii, P.tricornutum and N.atomus respectively) than negative zeta potential CeO2 NPs. The SSC signal detected by flow cytometry measured increases of particles entering cells, and this is related to cell viability and levels of intracellular ROS (correlation between SSC and percentage of ROS of 0.72 and 0.97 found for C.reinhardtii and P.tricornutum). When increased cellular complexity over controls is between 2 and 6 times greater, CeO2 (in bulk or nanoparticulate form) seems to protect against ROS. When increased cellular complexity is from 7 to 23 times greater, CeO2 does not provoke toxic responses; however, when increased cellular complexity over controls is very high, from 61 to 172 times, increased ROS production and toxic responses are found. Results show that two factors, the charge of CeO2 NPs and cell wall structure, constitute theprimary barrier to the possible accumulation of CeO2 NPs within phytoplankton cytosol. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据