4.4 Article

A Numerical Study on Hypergolic Combustion of Hydrazine Sprays in Nitrogen Tetroxide Streams

期刊

COMBUSTION SCIENCE AND TECHNOLOGY
卷 190, 期 3, 页码 515-533

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00102202.2017.1402010

关键词

Auto-ignition; Evaporation; Hypergolic propellants; Spray combustion; Thruster

资金

  1. [26820379]
  2. [16H04278]
  3. Grants-in-Aid for Scientific Research [26820379, 16H04278] Funding Source: KAKEN

向作者/读者索取更多资源

Unsteady simulations of hydrazine (N2H4) sprays in nitrogen tetroxide (NTO, NO2-N2O4) streams were conducted to explore the hypergolic combustion in bipropellant thrusters. The Navier-Stokes equations were solved using a detailed chemical kinetics mechanism and dispersed droplets were modeled through direct numerical simulations. Auto-ignition occurred when the sum of the heat transfer from the ambient gas and the heat release from hydrogen abstraction reactions exceeded the latent heat of the droplets. Although the evaporation of the droplets was enhanced as the droplet size decreased, the ignition delay time increased due to the lower temperatures of the mixtures of the N2H4 vapor and nitrogen tetroxide. After the flames reached a steady state, a double flame structure appeared, comprised of outer diffusion and inner decomposition flames. The inner decomposition flame and N2H4 vapor flow exhibited a sinusoidal behavior at a certain droplet size. This behavior was initiated by the locally expanded decomposition gases and developed by the supply of N2H4 droplets to the decomposition gases at relatively high temperatures. In cases of larger and smaller droplet sizes, the sinusoidal behavior was not significant due to less evaporation of the N2H4 droplets and a lower temperature of the N2H4 vapor, respectively. The sinusoidal behavior of the decomposition flames enhanced the mixing and reactions of the fuel components (i.e., N2H4, NH3, and H-2). The present study demonstrated a large impact of droplet size on flame dynamics, suggesting that a fine spray is not always better for hypergolic propellant combustion to consume the fuel components quickly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据