4.6 Article

Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

期刊

2D MATERIALS
卷 5, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/aa8c8a

关键词

graphene; pressure sensor; MEMS

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) Industrial Cooperative Awards in Science & Technology (CASE) scheme [EP/L505547/1]
  2. Ashley Nathan Smith and Danial Collyer of Merck Chemicals Ltd.
  3. EPSRC [EP/K005014/1] Funding Source: UKRI

向作者/读者索取更多资源

We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据