4.7 Article

Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 587, 期 -, 页码 177-184

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.02.108

关键词

Disinfection by-products; Natural organic matter; Hydrophobicity; Chlorination; Chloramination; Ozonation

资金

  1. National Natural Science Foundation of China [51290283, 21677155]

向作者/读者索取更多资源

Natural organic matter (NOM) is the main precursor of disinfection by-products (DBPs) formed during drinking water treatment processes. Previous studies of the relationships between DBP formation and NOM fractionation have mainly been focused on currently regulated DBPs and a few certain emerging DBPs. In this work, the Suwannee River NOM solution was fractionated into groups with different hydrophobicities using DAX-8 resins, and volatile and semi-volatile DBPs formed during the chlorination, chloramination and ozonation of the NOM fractions were examined by a nontargeted screening of comprehensive two-dimensional gas chromatography quadrupole mass spectrometry procedure. The results showed that a total of 302 DBPs representing nine chemical classes were detected, of which 266 were possibly newly detected, based on library searching with NIST 08 library (using similarity and reverse values of at least 600 and 700, respectively) and linear retention indices. The characterization of DBP precursors suggests that hydrophobic (HPO) NOM contains the major fraction of precursor for the formation of nitrogenous DBPs (contributing about 60% of the total nitrogenous DBPs) during all three disinfection processes. Much larger amounts of heterocyclic DBPs were formed from the HPO fraction than from the hydrophilic fraction during chlorination. During chloramination and ozonation, 5-15 times more ketones were formed from the hydrophilic fraction than from the HPO fraction. During ozonation, more than twice the amounts of esters and alcohols were formed from the hydrophilic fraction than from the HPO fraction. Three-dimensional excitation-emission matrix spectra suggest that similar to the formation of regulated DBPs, humic acid-like substances are probably the precursors of halogen-containing DBPs. Relatively higher nitrogenous DBPs formation from the HPO fraction might be because of the existence of protein-like materials. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据