4.7 Article

Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 598, 期 -, 页码 77-86

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.04.115

关键词

Phytoplankton; Organic matter; Microbial community; Mineralization; High-throughput sequencing; PICRUSt

资金

  1. National Natural Science Foundation of China [31370509, 31100363]
  2. Natural Science Foundation of Jiangsu Province [BK20131466]
  3. Start-up funds from Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences [NIGLAS2011QD05]

向作者/读者索取更多资源

Cyanobacterial blooms drastically influence carbon and nutrient cycling in eutrophic freshwater lakes. To understand the mineralization process of cyanobacteria-derived particulate organic matter (CyanPOM), the aerobic degradation of cyanobacterial blooms dominated by Micro cystis sp. was investigated over a 95-day microcosm experiment. Approximately 91%, 95% and 83% of the initial particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) were decomposed, respectively. The POC:PON ratio gradually increased from 5.9 to 13.5, whereas the POC:POP ratio gradually decreased from 230.3 to 120. These results indicated that the coupling of POC, PON, and POP changed during the decomposition of CyanPOM. Moreover, approximately 29%, 51% and 46% of POC, PON, and POP were mineralized to dissolved organic carbon, NO3-, and PO43-, respectively. Rhodospirillales (10.9%), Burkholderiales (16.5%), and Verrucomicrobiales (14.3%) dominated during the rapid phase (days 0-21), whereas Sphingomonadales (12.8%), Rhizobiales (11.8%), and Xanthomonadales (36.5%) dominated during the slow phase (days 21-50) of CyanPOM decomposition. Nitrospira (16.6%-32.9%) dominated and NO3- increased during the refractory phase (days 50-95), thus suggesting the occurrence of nitrification. Redundancy analysis revealed that bacterial communities during rapid decomposition were distinct from those during the slow and refractory periods. POC:POP, NH4+, and NO3- were the major driving factors for the patterns of bacterial communities. Furthermore, increase in nitrogen metabolism, methane metabolism, amino acid related enzymes and pyruvate metabolism characterized the functional variation of bacterial communities during degradation. Therefore, CyanPOM is an important nutrient source, and its decomposition level shapes bacterial communities. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据