4.8 Article

Nucleic Acid Biosensor Synthesis of an All-in-One Universal Blocking Linker Recombinase Polymerase Amplification with a Peptide Nucleic Acid-Based Lateral Flow Device for Ultrasensitive Detection of Food Pathogens

期刊

ANALYTICAL CHEMISTRY
卷 90, 期 1, 页码 708-715

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b01912

关键词

-

资金

  1. Natural Science Foundation of China [31671922]
  2. Beijing New-star Plan of Science and Technology [xxjc201721]

向作者/读者索取更多资源

In this study, a whole-course nucleic-acid constructed biosensor that combines the all-in-one concepts of the universal blocking linker recombinase polymerase amplification (UBLRPA) and a peptide nucleic acid (PNA)-based lateral flow device (PLFD) has been developed for the ultrasensitive detection of food pathogens., Using the preamplification UBLRPA principle, a universal linker and C3 space blocker were utilized to produce the universal linker single-duplex DNA products. The developed amplification system was employed to convert duplex products to a single strand. In the signal recognition strategy, a special PNA probe was successfully employed in the portable PLFD. The UBLRPA products were identified visually using the PLFD through dual hybridization (a PNA probe on the gold nanoparticle (Au-NP) was combined with a universal linker on the end of the products; a PNA capture probe was used on the test line and a universal linker on the other end of the products). The accumulation of Au-NPs produced a characteristic red band, enabling the visual detection of a food pathogen without further testing. To demonstrate the value of the all-in-one biosensor, Salmonella enterica subsp. enterica serovar typhimurium was used as a model organism. The biosensor showed high selectivity and extraordinary repeatability using S. typhimurium, and the limit of detection was 4 CFU mL(-1). Furthermore, when milk samples artificially contaminated with S. typhimurium were analyzed, the analysis was completed within 30 min without complicated instrumentation. The results exhibited good precision and recovery. This portable all-in-one biosensor demonstrates great promise for the screening of pathogens in food and environmental samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据