4.8 Article

RNA editing with CRISPR-Cas13

期刊

SCIENCE
卷 358, 期 6366, 页码 1019-1027

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aaq0180

关键词

-

资金

  1. National Institute of General Medical Sciences [T32GM007753]
  2. Paul and Daisy Soros Fellowship
  3. NIH F30 National Research Service Award [1F30-CA210382]
  4. NIH [1R01-HG009761, 1R01-MH110049, 1DP1-HL141201]
  5. Howard Hughes Medical Institute
  6. New York Stem Cell Foundation
  7. Simons Foundation
  8. Paul G. Allen Family Foundation
  9. Vallee Foundation

向作者/读者索取更多资源

Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level, where disease-relevant sequences can be rescued to yield functional protein products. Type VI CRISPR-Cas systems contain the programmable single-effector RNA-guided ribonuclease Cas13. We profiled type VI systems in order to engineer a Cas13 ortholog capable of robust knockdown and demonstrated RNA editing by using catalytically inactive Cas13 (dCas13) to direct adenosine-to-inosine deaminase activity by ADAR2 (adenosine deaminase acting on RNA type 2) to transcripts in mammalian cells. This system, referred to as RNA Editing for Programmable A to I Replacement (REPAIR), which has no strict sequence constraints, can be used to edit full-length transcripts containing pathogenic mutations. We further engineered this system to create a high-specificity variant and minimized the system to facilitate viral delivery. REPAIR presents a promising RNA-editing platform with broad applicability for research, therapeutics, and biotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据